F(x)=4x-2/6-x^2

Simple and best practice solution for F(x)=4x-2/6-x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=4x-2/6-x^2 equation:



(F)=4F-2/6-F^2
We move all terms to the left:
(F)-(4F-2/6-F^2)=0
Domain of the equation: 6-F^2)!=0
We move all terms containing F to the left, all other terms to the right
-F^2)!=-6
F!=-6/1
F!=-6
F∈R
We get rid of parentheses
F^2-4F+F+2/6=0
We multiply all the terms by the denominator
F^2*6-4F*6+F*6+2=0
Wy multiply elements
6F^2-24F+6F+2=0
We add all the numbers together, and all the variables
6F^2-18F+2=0
a = 6; b = -18; c = +2;
Δ = b2-4ac
Δ = -182-4·6·2
Δ = 276
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{276}=\sqrt{4*69}=\sqrt{4}*\sqrt{69}=2\sqrt{69}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{69}}{2*6}=\frac{18-2\sqrt{69}}{12} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{69}}{2*6}=\frac{18+2\sqrt{69}}{12} $

See similar equations:

| 400x-3x^2=10000 | | 5.5*1.5=e | | 2+3+3×10=z | | 9=3+12x | | h/6​−1=−3 | | 27x+8=5x-3 | | 4d-6+3D=8 | | Y=2x^2-2x^2-8x+8 | | 13x-(5-3x)=5(3x-1) | | x/2+4x-3=2 | | 40-2q=8 | | 9m^2−9m+1=0 | | 30x-7=2x+5 | | 40=2(12)+2w | | 3y+3=6y+15 | | 8^2+x^2=14^2 | | 8k^2−2k−6=0 | | 8k2−2k−6=0 | | 4y+12=2y+14 | | 96=80+5x | | 7p^2+3p=0 | | 34.6+4h~5=8.44 | | 96=80=5x | | 2p+52=14p-44 | | 3(2x+1=4x+9 | | 40-4q=8 | | 6s-58+s+97=180 | | 6s-58=s+97 | | (6/5)x+10=(2x-13) | | x-11=6x-81 | | 9(6x-11)=21 | | 13s-1=14s-3 |

Equations solver categories